How do you simplify (10^4)(10^9)(104)(109)?

2 Answers
Feb 5, 2016

(10^4)(10^9) = 10^13(104)(109)=1013

Explanation:

One way is to remember the general relation:
color(white)("XXX")b^pxxb^q = b^(p+q)XXXbp×bq=bp+q

Or
color(white)("XXX")10^4XXX104 means 1010 multiplied together 44 times
color(white)("XXX")XXXand
color(white)("XXX")10^9XXX109 means 1010 multiplied together 99 times

color(white)("XXX")XXXSo 10^4xx10^9104×109 will be 1010 multiplied together 1313 times
color(white)("XXX")XXXwhich can be written 10^131013

Feb 5, 2016

(10^4)(10^9) = 10^13(104)(109)=1013

Explanation:

If kk is a positive integer then:

10^k = stackrel "k times" overbrace(10xx10xx...xx10)

So if a and b are positive integers then we find:

10^a xx 10^b = stackrel "a times" overbrace(10xx10xx...xx10) xx stackrel "b times" overbrace(10xx10xx...xx10)

=stackrel "a + b times" overbrace(10xx10xx...xx10)=10^(a+b)

In our example, a=4 and b=9 and we find:

(10^4)(10^9) = 10^(4+9) = 10^13