How do you simplify (15t^-4t^3)/(-3t^-2)15t4t33t2?

1 Answer
Feb 15, 2016

= -5 t=5t

Explanation:

(15t^-4t^3)/(-3t^-2)15t4t33t2

= (15/-3) xx (t^-4t^3)/(t^-2)=(153)×t4t3t2

= -5 xx (t^-4t^3)/(t^-2)=5×t4t3t2

As per property:
1. color(blue)(a^m/a^n=a^(m-n)1.aman=amn

2. color(blue)(a^m xx a^n=a^(m+n)2.am×an=am+n

Applying the above to exponents of tt:
= -5 xx (t^-4t^3)/(t^-2)=5×t4t3t2

= -5 xx (t^(-4 +3))/(t^-2)=5×t4+3t2

= -5 xx (t^(-1))/(t^-2)=5×t1t2

= -5 xx t^(-1- (-2))=5×t1(2)

= -5 xx t^(-1+2)=5×t1+2

= -5 xx t^1=5×t1

= -5 t=5t