How do you simplify 2/5 (5k + 35) - 8?

2 Answers
Mar 27, 2018

The simplified expression is 2k+6.

Explanation:

Use the distributive property:

color(magenta)a(color(red)x+color(blue)y)=color(magenta)a*color(red)x+color(magenta)a*color(blue)y

Here's this property applied to our expression:

color(white)=color(magenta)(2/5)(color(red)(5k)+color(blue)35)-8

=color(magenta)(2/5)*color(red)(5k)+color(magenta)(2/5)*color(blue)35-8

=color(magenta)(2/color(red)cancelcolor(black)5)*color(red)(color(black)cancelcolor(red)5k)+color(magenta)(2/5)*color(blue)35-8

=color(magenta)2color(red)k+color(magenta)(2/5)*color(blue)35-8

=color(magenta)2color(red)k+color(magenta)((2color(black)*color(blue)35)/5)-8

=color(magenta)2color(red)k+color(magenta)(color(purple)70/5)-8

=color(magenta)2color(red)k+color(purple)14-8

=color(magenta)2color(red)k+6

That's the expanded expression. Hope this helped!

Mar 27, 2018

2/5(5k+35)-8=color(blue)(2k+6

Explanation:

Simplify:

2/5(5k+35)-8

Expand.

(10k)/5+70/5-8

Multiply 8 by 5/5 to get the least common denominator 5. Multiplying by 5/5 is the same as multiplying by 1, so the numbers will change, but the value of the fraction will stay the same.

(10k)/5+70/5-8xx5/5

Simplify.

(color(red)cancel(color(black)(10))^2k)/color(red)cancel(color(black)(5))^1+color(red)cancel(color(black)(70))^14/color(red)cancel(color(black)(5))^1-color(red)cancel(color(black)(40))^8/color(red)cancel(color(black)(5))^1

Simplify.

2k+14-8

2k+6