How do you simplify (2ag^2)^4(3a^2g^3)^2?

1 Answer
Jun 15, 2018

144a^8g^14

Explanation:

(2ag^2)^4(3a^2g^3)^2

First, let's look at (2ag^2)^4. The exponent 4 applies to everything inside the parenthesis, so:
2^4 = 16

a^4 = a^4

(g^2)^4 = g^(2*4) = g^8

Multiply them all together:
16a^4g^8

Now (3a^2g^3)^2:
3^2 = 9

(a^2)^2 = a^(2*2) = a^4

(g^3)^2 = g^(3*2) = g^6

Multiply them all together:
9a^4g^6

Now multiply both simplified expressions:
(16a^4g^8)(9a^4g^6)

Simplify:
144a^(4+4)g^(8+6)

Therefore, the simplified expression is:
144a^8g^14

Hope this helps!