How do you simplify #3 2/5 div 3 1/2 #?

1 Answer
Feb 1, 2017

See the entire simplification process below:

Explanation:

First, convert the compound fractions to improper fractions:

#((3 xx 5/5) + 2/5) -: ((3 xx 2/2) + 1/2) ->#

#(15/5 + 2/5) -: (6/2 + 1/2) ->#

#17/5 -: 7/2#

We can now rewrite this expression as:

#(17/5)/(7/2)#

We can now use this rule for dividing fractions:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

Substituting and calculating gives:

#(color(red)(17)/color(blue)(5))/(color(green)(7)/color(purple)(2)) = (color(red)(17) xx color(purple)(2))/(color(blue)(5) xx color(green)(7)) = 34/35#