How do you simplify 3(tan^2 theta - sec^2 theta)?

2 Answers
Aug 5, 2015

3(tan^2(theta)-sec^2(theta))=- 3

Explanation:

tan(theta) = (sin(theta))/(cos(theta))
color(white)("XXXX")color(white)("XXXX")rarr tan^2(theta) = sin^2(theta)/cos^2(theta)

sec(theta) = 1/cos(theta)
color(white)("XXXX")color(white)("XXXX")sec^2(theta)=1/cos^2(theta)

tan^2(theta) - sec^2(theta)
color(white)("XXXX")color(white)("XXXX")=sin^2(theta)/cos^2(theta) - 1/cos^2(theta)

color(white)("XXXX")color(white)("XXXX")=(sin^2(theta)-1)/(cos^2(theta)

and since sin^2(theta)+cos^2(theta) = 1
color(white)("XXXX")color(white)("XXXX")= (-cos^2(theta))/cos^2(theta)

color(white)("XXXX")color(white)("XXXX") = - 1

3(tan^2(theta)-sec^2(theta))
color(white)("XXXX")color(white)("XXXX")=- 3

Aug 6, 2015

You can use the identity:

1+tan^2theta = sec^2theta

=> 3(tan^2theta - (1+tan^2theta))

= 3(tan^2theta - 1 - tan^2theta)

= 3(-1) = color(blue)(-3)