How do you simplify (3c \cdot 2c ^ { 2} ) ^ { 2}?

2 Answers
Jun 2, 2017

(3c*2c^2)^2
=9c^2+12c^3+4c^6

Explanation:

Using the formula for a perfect square
(a+b)^2=a^2+2ab+b^2
Hence:
(3c*2c^2)^2
=(3c)^2+2(3c)(2c^2)+(2c^2)^2 (Use the formula)
=3^2c^2+2*3*2*c*c^2+2^2(c^2)^2 (expand the brackets)
=9c^2+12c^(2+1)+4c^(2*2) (Use laws of exponents x^a*x^b=x^(a+b) and (x^a)^b=x^(a*b)
=9c^2+12c^3+4c^6

Hope this helps!

Jun 2, 2017

36c^6

Explanation:

"using the "color(blue)"laws of exponents"

color(red)(bar(ul(|color(white)(2/2)color(black)(a^mxxa^n=a^(m+n);(a^mb^n)^p=a^(mp)b^(np))color(white)(2/2)|)))

"simplifying 'inside' the bracket"

3cxx2c^2=6c^3

rArr(6c^3)^2

=6^((1xx2))xxc^((3xx2))

=6^2xxc^6

=36c^6