How do you simplify 3x24(xyz)+4xy3(x2+2)2x23(xyz)+3xy5(x2+2)?

1 Answer
Oct 22, 2017

(160)(507x3y55x2z+904xy)

Explanation:

Let’s first simplify the individual terms and then combine them finally.

13(x24)(xyz)=(13x24)(xyz)=13x3y413x2z4

(4x)(y3)(x2+2)=(13xy3)(x2+2)=13x3y3+26xy3

2(x23)(xyz)=(7x23)(xyz)=7x3y37x2z3

(3x)(y5)(x2+2)=(16xy5)(x2+2)=16x3y5+32xy5

Combining all the terms,

13x3y413x2z4+13x3y3+26xy37x3y3+7x2z3+16x3y5+32xy5

=13x2z4+7x2z3+13x3y4+13x3y37x3y3+16x3y5+26xy3+32xy5

=11x2z12+507x3y60+226xy15

(160)(507x3y55x2z+904xy)