How do you simplify 4 sq.root of 75 + sq.root of 27.?

2 Answers
Jul 13, 2015

4sqrt75+sqrt27=23sqrt3

Explanation:

We are given:

4sqrt75+sqrt27

Let's look at sqrt75

25 goes into 75 3 times

3*25=75

So,

sqrt75=sqrt(3*25)

the square root of 25 is 5, so

sqrt75=sqrt(3*25)=5sqrt3

Now, let's look at sqrt27

3 goes into 27 9 times

3*9=27

So,

sqrt27=sqrt(3*9)

the square root of 9 is 3, so

sqrt27=sqrt(3*9)=3sqrt3

So,

4sqrt75+sqrt27=4*5sqrt3+3sqrt3

4*5sqrt3+3sqrt3=20sqrt3+3sqrt3=23sqrt3

Recall: asqrtb+csqrtb=(a+c)sqrtb

Jul 13, 2015

4sqrt(75)+sqrt(27)=23sqrt(3)

Explanation:

Use sqrt(ab) = sqrt(a)sqrt(b) for a, b >= 0

4sqrt(75)+sqrt(27)

=4sqrt(5^2*3)+sqrt(3^2*3)

=4sqrt(5^2)sqrt(3)+sqrt(3^2)sqrt(3)

=4*5sqrt(3)+3sqrt(3)

=20sqrt(3)+3sqrt(3)

=23sqrt(3)