How do you simplify #-5/(2sqrt112)#?

1 Answer
Aug 6, 2016

#(-5sqrt(7))/56#

Explanation:

#-5/(2sqrt(112))#

Rationalise the denominator:
#(-5sqrt(112))/(2sqrt(112)sqrt(112)# #= (-5sqrt(112))/(2*112)#

Express the #sqrt(112)# as the root of the product of prime numbers:

#= (-5*sqrt(2*2*2*2*7))/224#

Each pair of primes may be taken out of the #sqrt#

#=(-5*2*2sqrt(7))/224#

#=(-5sqrt(7))/56#