How do you simplify #5/8 div -1/2#?

2 Answers
Mar 20, 2018

See a solution process below:

Explanation:

First, we can rewrite this expression as:

#(5/8)/((-1)/2)#

Now, we can use this rule for dividing fractions to simplify the expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(5)/color(blue)(8))/(color(green)(-1)/color(purple)(2)) => (color(red)(5) xx color(purple)(2))/(color(blue)(8) xx color(green)(-1)) => (color(red)(5) xx cancel(color(purple)(2))color(purple)(1))/(cancel(color(blue)(8))color(blue)(4) xx color(green)(-1)) => 5/-4 = -5/4#

Mar 20, 2018

#-1.25#

Explanation:

First, let's forget about the negative sign, and just focus on the numbers. #5/8\divide1/2#= #5/8*2#=#5/4#=#1.25#. Now we bring the negative sign back in to get #-1.25#.