How do you simplify 5sqrt(3x^3)+2sqrt(27x)53x3+227x?

1 Answer
Jul 30, 2017

See a solution process below:

Explanation:

Step 1) Simplify the radicals by rewriting the radicals and then using this rule for radicals:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))ab=ab

5sqrt(color(red)(x^2) * color(blue)(3x)) + 2sqrt(color(red)(9) * color(blue)(3x)) =>5x23x+293x

5sqrt(color(red)(x^2))sqrt(color(blue)(3x)) + 2sqrt(color(red)(9))sqrt(color(blue)(3x)) =>5x23x+293x

5xsqrt(color(blue)(3x)) + (2 * 3)sqrt(color(blue)(3x)) =>5x3x+(23)3x

5xsqrt(color(blue)(3x)) + 6sqrt(color(blue)(3x))5x3x+63x

Step 2) Combine like terms by factoring out the common term: sqrt(color(blue)(3x))3x :

(5x + 6)sqrt(color(blue)(3x))(5x+6)3x