How do you simplify ((-7^2 r^5 s^-3)/( 3^-1 r^-4 s^4))^4?

1 Answer
Jul 11, 2015

A=((147^4)*r^36)/(s^28)

Explanation:

Let's go to simplify : A=((-7^2r^5s^(-3))/(3^(-1)r^(-4)s^4))^4

First, use this properties :
->color(red)(a^(-n) = 1/a^n)
->color(red)(1/a^(-n) = a^n)

A=((-7^2*color(red)(3^1)r^5color(red)(r^4))/(s^4color(red)(s^3)))^4

Second, simplify A with that :

color(blue)(a^n*a^m=a^(n+m))

A=((-49*3*color(blue)(r^9))/(color(blue)(s^7)))^4

Finally, apply the power 4 to the fraction inside the parenthesis, with :

color(green)((kxxa^x)^y=k^yxxa^(x*y))

A=((-147)^4*color(green)(r^36))/(color(green)(s^28))


Therefore :

A=(466948881*r^36)/(s^28)