How do you simplify (8+6i)-(2+3i)?

1 Answer
Oct 23, 2016

3*sqrt(5)*(cos(0.464)+isin(0.464))

Explanation:

First simplify Cartesian form,
(8+6i)-(2+3i)= 8-2 +6i-3i
=6+3i

now to convert to trigonometric form,

6+3i = r*cis(theta)

where,
r=sqrt(6^2+3^2)
r= sqrt(45) (which can be further simplified to 3*sqrt(5))

and,

theta=tan^-1(3/6)

theta = 0.464 (3dp, radians)

so we can express (8+6i)-(2+3i) as,

3*sqrt(5)*cis(0.464)

or in expanded version,
3*sqrt(5)*(cos(0.464)+isin(0.464))