How do you simplify (8m^3n^2)/(4mn^3)8m3n24mn3?

1 Answer
Mar 18, 2018

See a solution process below:

Explanation:

First, rewrite the expression as:

8/4(m^3/m)(n^2/n^3) =>84(m3m)(n2n3)

2(m^3/m)(n^2/n^3)2(m3m)(n2n3)

Next, use these rules of exponents to rewrite the mm terms:

a = a^color(blue)(1)a=a1 and x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))xaxb=xab

2(m^color(red)(3)/m^color(blue)(1))(n^2/n^3) =>2(m3m1)(n2n3)

2m^(color(red)(3)-color(blue)(1))(n^2/n^3) =>2m31(n2n3)

2m^2(n^2/n^3)2m2(n2n3)

Now, use these rules of exponents to simplify the nn terms:

x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))xaxb=1xba and a^color(red)(1) = aa1=a

2m^2(n^color(red)(2)/n^color(blue)(3)) =>2m2(n2n3)

2m^2(1/n^(color(blue)(3)-color(red)(2))) =>2m2(1n32)

2m^2(1/n^color(red)(1)) =>2m2(1n1)

2m^2(1/n) =>2m2(1n)

(2m^2)/n2m2n