First, rewrite the expression as:
#8/4(m^3/m)(n^2/n^3) =>#
#2(m^3/m)(n^2/n^3)#
Next, use these rules of exponents to rewrite the #m# terms:
#a = a^color(blue)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#2(m^color(red)(3)/m^color(blue)(1))(n^2/n^3) =>#
#2m^(color(red)(3)-color(blue)(1))(n^2/n^3) =>#
#2m^2(n^2/n^3)#
Now, use these rules of exponents to simplify the #n# terms:
#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))# and #a^color(red)(1) = a#
#2m^2(n^color(red)(2)/n^color(blue)(3)) =>#
#2m^2(1/n^(color(blue)(3)-color(red)(2))) =>#
#2m^2(1/n^color(red)(1)) =>#
#2m^2(1/n) =>#
#(2m^2)/n#