How do you simplify and divide (2c^3-3c^2+3c-4)div(c-2)?
1 Answer
Nov 2, 2017
Explanation:
"one way is to use the divisor as a factor in the numerator"
"consider the numerator"
color(red)(2c^2)(c-2)color(magenta)(+4c^2)-3c^2+3c-4
=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(magenta)(+2c)+3c-4
=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)color(magenta)(+10)-4
=color(red)(2c^2)(c-2)color(red)(+c)(c-2)color(red)(+5)(c-2)+6
"quotient "=color(red)(2c^2+c+5)," remainder "=6
rArr(2c^3-3c^2+3c-4)/(c-2)=2c^2+c+5+6/(c-2)