How do you simplify and divide (y^3+3y^2-5y-4)/(y+4)y3+3y2−5y−4y+4?
2 Answers
The quotient is
Explanation:
Let's perform the synthetic division
The remainder is
Explanation:
"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator
"consider the numerator"consider the numerator
color(red)(y^2)(y+4)color(magenta)(-4y^2)+3y^2-5y-4y2(y+4)−4y2+3y2−5y−4
=color(red)(y^2)(y+4)color(red)(-y)(y+4)color(magenta)(+4y)-5y-4=y2(y+4)−y(y+4)+4y−5y−4
=color(red)(y^2)(y+4)color(red)(-y)(y+4)color(red)(-1)(y+4)color(magenta)(+4)-4=y2(y+4)−y(y+4)−1(y+4)+4−4
=color(red)(y^2)(y+4)color(red)(-y)(y+4)color(red)(-1)(y+4)+0=y2(y+4)−y(y+4)−1(y+4)+0
rArr(cancel((y+4))(color(red)(y^2-y-1)))/cancel((y+4))
=y^2-y-1larr" quotient"