How do you simplify cos(2arcsinx)? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Cesareo R. Jun 1, 2016 cos(2arcsin(x))=1−2x2 Explanation: Using cos(a+b)=cos(a)cos(b)−sin(a)sin(b). If a=b then cos(2a)=1−2sin2(a) so cos(2arcsin(x))=1−2x2 Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin(0.31))? What is sin(sin−1√22)? How do you find the exact value of cos(tan−1√3)? How do you evaluate sec−1√2? How do you find cos(cot−1√3) without a calculator? How do you rewrite sec2(tan−1x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin−1(0.1)? How do you solve the inverse trig function cos−1(−√22)? How do you solve the inverse trig function sin(sin−1(13))? See all questions in Inverse Trigonometric Properties Impact of this question 36163 views around the world You can reuse this answer Creative Commons License