How do you simplify cos 2x = (1-tan^2x)/(1+tan^2x)cos2x=1tan2x1+tan2x?

1 Answer
Mar 25, 2018

Kindly go through a Proof in the Explanation.

Explanation:

We have, cos2x=cos^2x-sin^2x=(cos^2x-sin^2x)/1cos2x=cos2xsin2x=cos2xsin2x1,

=(cos^2x-sin^2x)/(cos^2x+sin^2x)=cos2xsin2xcos2x+sin2x,

=[cos^2x{1-sin^2x/cos^2x}]/[cos^2x{1+sin^2x/cos^2x}]=cos2x{1sin2xcos2x}cos2x{1+sin2xcos2x}.

rArr cos2x=(1-tan^2x)/(1+tan^2x)cos2x=1tan2x1+tan2x, as desired!