How do you simplify cotx (sinx-cscx)cotx(sinxcscx)?

1 Answer
May 7, 2018

The answer
[-cosx(cos^2x)]/sin^2x=-cosx*cot^2xcosx(cos2x)sin2x=cosxcot2x

Explanation:

show below

cotx (sinx-cscx)cotx(sinxcscx)

cotx*sinx-cotx*cscxcotxsinxcotxcscx

cotx=cosx/sinxcotx=cosxsinx

cscx=1/sinxcscx=1sinx

cosx/sinx*sinx-cosx/sinx*1/sinxcosxsinxsinxcosxsinx1sinx

cosx-cosx/sin^2x=[cosx*sin^2x-cosx]/sin^2x=[-cosx(1-sin^2x)]/sin^2xcosxcosxsin2x=cosxsin2xcosxsin2x=cosx(1sin2x)sin2x

1-sin^2x=cos^2x1sin2x=cos2x

[-cosx(cos^2x)]/sin^2x=-cosx*cot^2xcosx(cos2x)sin2x=cosxcot2x