How do you simplify csc(-x)/cot(-x)csc(x)cot(x)?

2 Answers
Sep 5, 2016

csc(-x)/cot(-x)=-csc x/-cot x=(csc x)/(cot x)=(1/sinx)/(cos x/sin x)csc(x)cot(x)=cscxcotx=cscxcotx=1sinxcosxsinx

=1/cos x=sec x=1cosx=secx.

Sep 5, 2016

sec(x)sec(x)

Explanation:

We have: (csc(- x)) / (cot(- x))csc(x)cot(x)

Let's apply the fact that csc(x)csc(x) and cot(x)cot(x) are odd functions:

= (- csc(x)) / (- cot(x))=csc(x)cot(x)

= (csc(x)) / (cot(x))=csc(x)cot(x)

Then, let's apply two standard trigonometric identities; csc(x) = (1) / (sin(x))csc(x)=1sin(x) and cot(x) = (cos(x)) / (sin(x))cot(x)=cos(x)sin(x):

= ((1) / (sin(x))) / ((cos(x)) / (sin(x)))=1sin(x)cos(x)sin(x)

= (1) / (sin(x)) cdot (sin(x)) / (cos(x))=1sin(x)sin(x)cos(x)

= (1) / (cos(x))=1cos(x)

Finally, let's apply another standard trigonometric identity; sec(x) = (1) / (cos(x))sec(x)=1cos(x):

= sec(x)=sec(x)