How do you simplify elnx?

1 Answer
Feb 6, 2016

eln(x) = 1x

Explanation:

Total rewrite as changed my mind about pressentation.

Preamble:

Consider the generic case of log10(a)=b

Another way of writing this is 10b=a

Suppose a=10log10(10)=b

10b=10b=1

So loga(a)=1 important example

We are going to use this principle.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Write eln(x) as 1eln(x)

Let y=eln(x) 1y=1eln(x) ..................Equation(1)

.......................................................................................
Consider just the denominators and take logs of both sides

y=eln(x) ln(y)=ln(eln(x))

But for generic case ln(st)tln(s)

ln(y)=ln(x)ln(e)

But loge(e) ln(e)=1 from important example

ln(y)=ln(x)×1

Thus y=x
.....................................................................................

So Equation(1) becomes

1y = 1eln(x) = 1x

Thus eln(x)=1x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Footnote

In conclusion the general rule applies: aloga(x)=x