How do you simplify #i^-33#?

1 Answer
May 27, 2015

Algebraically you could do this like this: #i^(-33)=1/(i^33)=1/(i^32*i)=1/((i^2)^16*i)=1/((-1)^16*i)=#
#=1/(1*i)=1/i * i/i =i/(i^2)=i/(-1)=-i#

If you have to use the trigonometric form it goes like this:
#i^(-33)=[1*(cos (pi/2) +i sin (pi/2))]^(-33)=#
#=1^(-33)*(cos((-33pi)/2)+i sin((-33pi)/2))=#
#=cos((33pi)/2)-i sin((33pi)/2)=#
#=cos(8*2pi + pi/2)-i sin(8*2pi + pi/2)=#
#=cos(pi/2)-i sin(pi/2)=#
#=0-i*1=-i#
What I used here is the De Moivre's formula and some basic properties of #sin# and #cos#.