How do you simplify ln((5e^x)-(10e^2x))ln((5ex)(10e2x))?

1 Answer
Jan 2, 2016

If you meant ln((5e^x)-(10e^(2x)))ln((5ex)(10e2x))

Then you can factor the e^xex and use ln(a*b)=lna+lnbln(ab)=lna+lnb

x+ln5+ln(1-2e^x)x+ln5+ln(12ex)

Explanation:

It can't actually. You can't simplify polynomials with exponential functions. The fact that it is substraction (and not multiplication or division) leaves no room for simplifications.

However, if you meant ln((5e^x)-(10e^(2x)))ln((5ex)(10e2x))

ln(5e^x-10e^x*e^x)ln(5ex10exex)

Factor the 5e^x5ex:

ln(5*e^x*(1-2e^x))ln(5ex(12ex))

Use of the property ln(a*b*c)=lna+lnb+lncln(abc)=lna+lnb+lnc gives:

ln5+lne^x+ln(1-2e^x)ln5+lnex+ln(12ex)

Since ln=log_eln=loge

ln5+x+ln(1-2e^x)ln5+x+ln(12ex)