How do you simplify (p^3-1)/(5-10p+5p^2)? Algebra Rational Equations and Functions Division of Polynomials 1 Answer Shwetank Mauria Jan 24, 2017 (p^3-1)/(5-10p+5p^2)=(p^2+p+1)/(5(p-1)) or (p^2+p+1)/(5p-5) Explanation: To simplify (p^3-1)/(5-10p+5p^2), we should first factorize numerator and denomiantor. p^3-1=p^3-p^2+p^2-p+p-1 = p^2(p-1)+p(p-1)+1(p-1) = (p^2+p+1)(p-1) and 5-10+5p^2=5(p^2-2p+1) = 5(p^2-p-p+1)=5(p(p-1)-1(p-1))=5(p-1)(p-1) Hence (p^3-1)/(5-10p+5p^2) = ((p^2+p+1)(p-1))/(5(p-1)(p-1)) = ((p^2+p+1)cancel((p-1)))/(5(p-1)cancel((p-1))) = (p^2+p+1)/(5(p-1)) or (p^2+p+1)/(5p-5) Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide 9x^2-16 by 3x+4? How do you divide \frac{x^2+2x-5}{x}? How do you divide \frac{x^2+3x+6}{x+1}? How do you divide \frac{x^4-2x}{8x+24}? How do you divide: (4x^2-10x-24) divide by (2x+3)? How do you divide: 5a^2+6a-9 into 25a^4? How do you simplify (3m^22 + 27 mn - 12)/(3m)? How do you simplify (25-a^2) / (a^2 +a -30)? See all questions in Division of Polynomials Impact of this question 1537 views around the world You can reuse this answer Creative Commons License