How do you simplify root3(24a^10b^6)324a10b6?

1 Answer
Jul 6, 2016

root(3)(24a^10b^6)=2a^3b^2root(3)(3a)324a10b6=2a3b233a

Explanation:

root(3)(24a^10b^6324a10b6

Now a^10=a^(3+3+3+1)=a^3xxa^3xxa^3xxaa10=a3+3+3+1=a3×a3×a3×a and b^6=b^(2+2+2)=b^2xxb^2 xxb^2b6=b2+2+2=b2×b2×b2 and such above is equal to
root(3)(2xx2xx2xx3xxa^3xxa^3xxa^3xxaxxb^2xxb^2 xxb^232×2×2×3×a3×a3×a3×a×b2×b2×b2

= root(3)(ul(2xx2xx2)xx3xx ul(a^3xxa^3xxa^3)xxaxx ul(b^2xxb^2 xxb^2)

= 2xxa^3xxb^2xxroot(3)(3xxa)

= 2a^3b^2root(3)3a