How do you simplify root4(32x^4 y^5 n^10)?

1 Answer
Jul 9, 2016

root(4)(32x^4y^5n^10)=2xyn^2root(4)(2yn^2)

Explanation:

root(4)(32x^4y^5n^10)

= root(4)(2×2×2×2×2×x×x×x×x×y×y×y×y×y×n×n×n×n×n×n×n×n×n×n)

= root(4)(ul(2×2×2×2)×2×ul(x×x×x×x)×ul(y×y×y×y)×y×ul(n×n×n×n)×ul(n×n×n×n)×n×n)

= 2x×y×n×n×root(4)(2y×n×n)

= 2xyn^2root(4)(2yn^2)