How do you simplify (sec y - tan y) (sec y + tan y) / sec y?

2 Answers
Jun 9, 2016

Apply the identity sectheta = 1/costheta and tantheta = sintheta/costheta.

1/cosy - siny/cosy((1/cosy + siny/cosy)/(1/cosy))

=((1 - siny)(1 + siny)/cosy)/(cancel(cosy) xx 1/cancel(cosy))

= (1 - sin^2y)/cosy

Apply the pythagorean identity cos^2theta = 1 - sin^2theta

= cos^2y/cosy

=cosy

Hopefully this helps!

Jun 9, 2016

cosy

Explanation:

Given expression
=((secy-tany)(secy+tany))/secy

=(sec^2y-tan^2y)*cosy
=1*cosy=cosy
[Using formula (sec^2y-tan^2y)=1 and 1/secy=cosy]