How do you simplify [sin((pi/2)+h)-sin(pi/2)]/(h)sin((π2)+h)sin(π2)h?

1 Answer

It is

[sin((pi/2)+h)-sin(pi/2)]/(h)=[(sin(pi/2)cosh+cos(pi/2)*sinh)-sin(pi/2)]/[h]=(cosh-1)/[h]sin((π2)+h)sin(π2)h=(sin(π2)cosh+cos(π2)sinh)sin(π2)h=cosh1h

Note that

1.sin(a+b)=sina*cosb+cosa*sinbsin(a+b)=sinacosb+cosasinb
2.sin(pi/2)=1sin(π2)=1 , cos(pi/2)=0cos(π2)=0