How do you simplify sin theta / (1+ cos theta) + (1+cos theta) / sin theta?

1 Answer
Jun 2, 2016

Start by putting on a common denominator.

Explanation:

(sin theta xx sin theta)/((1 + costheta) xx sin theta) + ((1 + costheta) xx(1+ costheta))/(sin theta xx (1 + costheta))

=(sin^2theta + 1 + 2costheta + cos^2theta)/(sin theta xx (1 + costheta)

Using the pythagorean identity cos^2theta + sin^2theta = 1

=(2 + 2costheta)/(sin theta xx(1+ costheta)

= (2(1 + costheta))/(sin theta xx (1 + costheta)

= 2/sintheta

Now recall that 1/sintheta = csctheta

=2csctheta

Hopefully this helps!