How do you simplify sqrt(1/8)18?

2 Answers
Mar 28, 2018

sqrt2/424

Explanation:

Looking at the given expression:
sqrt(1/8)18

By: sqrt(a/b)= sqrta/sqrtbab=ab

sqrt(1/8)=sqrt1/sqrt818=18

Which is:

sqrt1/sqrt8= 1/sqrt818=18

Simplify:
1/sqrt8=1/sqrt(2*4)18=124

1/sqrt(2*4)= 1/(2sqrt2)124=122

Rationalize the denominator:
1/(2sqrt2)*sqrt2/sqrt2= sqrt2/412222=24

Mar 28, 2018

sqrt(1/8)=color(blue)(sqrt2/418=24

Explanation:

Simplify:

sqrt(1/8)18

Apply square root rule: sqrt(a/b)=sqrta/sqrtb; b!=0ab=ab;b0

sqrt1/sqrt818

Simplify sqrt11 to 11.

1/sqrt818

Rationalize the denominator.

1/sqrt8xxsqrt8/sqrt818×88

sqrt8/(sqrt8sqrt8)888

Apply square root rule: sqrtasqrta=aaa=a

sqrt8/888

Prime factorize sqrt88.

sqrt(2xx2xx2)/8=2×2×28=

sqrt(2^2xx2)/822×28

Apply square root rule: sqrt(a^2)=aa2=a

(color(red)cancel(color(black)(2))^1sqrt2)/color(red)cancel(color(black)(8))^4

Simplify.

sqrt2/4