How do you simplify sqrt(196y^10)196y10?

2 Answers
Sep 10, 2015

sqrt(196y^10) = 14y^5196y10=14y5

Explanation:

14xx14 = 19614×14=196
y^5xxy^5=y^10y5×y5=y10

So sqrt(196y^10) = sqrt(14^2(y^5)^2)196y10=142(y5)2

color(white)("XXXXXX")= abs(14y^5)XXXXXX=14y5
...we take the absolute value to ensure the root extracted is the principal root

Sep 10, 2015

sqrt(196y^10) = 14abs(y^5)196y10=14y5

Explanation:

First, note that in general sqrt(x^2) = abs(x)x2=|x| rather than xx,

since:

sqrt(x^2) = { (x, "if x >= 0"), (-x, "if x < 0") :}

Also, if a, b >= 0 then sqrt(ab) = sqrt(a)sqrt(b)

So:

sqrt(196y^10) = sqrt(14^2 (y^5)^2) = sqrt(14^2)sqrt((y^5)^2) = 14abs(y^5)