How do you simplify sqrt(-2)^6?

1 Answer
Jan 15, 2017

(sqrt(-2))^6 = -8

Explanation:

Note that if a is any number and m, n are positive integers then:

(a^m)^n = overbrace((a^m)xx(a^m)xx...xx(a^m))^"n times"

color(white)((a^m)^n) = overbrace(overbrace((axxaxx...xxa))^"m times"xxoverbrace((axxaxx...xxa))^"m times"xx...xxoverbrace((axxaxx...xxa))^"m times")^"n times"

color(white)((a^m)^n) = overbrace(axxaxx...xxa)^"mn times"

color(white)((a^m)^n) = a^(mn)

So in our example we find:

(sqrt(-2))^6 = (sqrt(-2))^(2*3) = (sqrt(-2)^2)^3 = (-2)^3 = -8

color(white)()
Footnote

I demonstrated (a^m)^n = a^(mn) above since this particular "rule" fails for negative or complex values of a if m, n are fractional.

For example:

-1 = (-1)^1 = (-1)^(3/2*2/3) != ((-1)^(3/2))^(2/3) = (-i)^(2/3) = 1/2-sqrt(3)/2i