How do you simplify sqrt((32a^4)/b^2)32a4b2?

1 Answer
May 8, 2017

See the solution process below:

Explanation:

We can rewrite this expression as:

sqrt(((16 * 2)a^4)/b^2) => sqrt((16a^4)/b^2 * 2)(162)a4b216a4b22

Using this rule for radicals we can further rewrite this expression as:

sqrt(a * b) = sqrt(a) * sqrt(b)ab=ab

sqrt((16a^4)/b^2 * 2) => sqrt((16a^4)/b^2) * sqrt(2)16a4b2216a4b22

We can now take the square root of the left radical to simplify this expression as:

(+-4a^2)/bsqrt(2)±4a2b2

Or, because the original question is given with only the principal root indicated:

(4a^2)/bsqrt(2)4a2b2