How do you simplify sqrt(5.6)?

1 Answer
Apr 27, 2018

(2sqrt35)/5=2/5sqrt35

Explanation:

"using the "color(blue)"laes of radicals"

•color(white)(x)sqrtaxxsqrtb=sqrt(ab)" and "sqrtaxxsqrta=a

•color(white)(x)sqrt(a/b)=sqrta/sqrtb

"note that "5.6=56/10

rArrsqrt5.6=sqrt(56/10)=sqrt56/sqrt10

"and "sqrt56=sqrt(4xx14)=sqrt4xxsqrt14=2sqrt14

rArrsqrt56/sqrt10=(2sqrt14)/sqrt10

color(blue)"rationalise the denominator"

"multiply numerator/denominator by "sqrt10

rArr(2sqrt14)/sqrt10xxsqrt10/sqrt10

=(2sqrt140)/10=(2xx2sqrt35)/10=(4sqrt35)/10=2/5sqrt35