How do you simplify #sqrt(98x^3)3#?

1 Answer
Oct 23, 2015

#21xsqrt(2x)#

Explanation:

First lets re-arrange the equation:
#sqrt(98x^3)*3# #rArr# #3*sqrt(98x^3)#
Now lets see what we can extract from inside the radical sign
#3*sqrt(2*7*7*x*x*x)#

Now because this is a square root , we can pull out the #sqrt(7*7)# and #sqrt(x*x)# and we are left with #sqrt(2*x)# in the radical.

Rewrite:
#3*sqrt(7*7)*sqrt(x*x) * sqrt(2x)# #rArr# #(3*7*x)*sqrt(2x)#

Answer:
#21x*sqrt(2x)#