How do you simplify #sqrt45 + 5sqrt20 + 9sqrt3 + sqrt75#? Prealgebra Exponents, Radicals and Scientific Notation Square Root 1 Answer Shwetank Mauria Apr 29, 2016 #sqrt45+5sqrt20+9sqrt3+sqrt75=13sqrt5+14sqrt3# Explanation: #sqrt45+5sqrt20+9sqrt3+sqrt75# = #sqrt(ul(3xx3)xx5)+5sqrt(ul(2xx2)xx5)+9sqrt3+sqrt(ul(5xx5)xx3)# = #3sqrt5+5xx2xxsqrt5+9sqrt3+5sqrt3# = #3sqrt5+10sqrt5+9sqrt3+5sqrt3# = #13sqrt5+14sqrt3# Answer link Related questions How do you simplify #(2sqrt2 + 2sqrt24) * sqrt3#? How do you simplify #sqrt735/sqrt5#? How do you rationalize the denominator and simplify #1/sqrt11#? How do you multiply #sqrt[27b] * sqrt[3b^2L]#? How do you simplify #7sqrt3 + 8sqrt3 - 2sqrt2#? How do you simplify #sqrt468 #? How do you simplify #sqrt(48x^3) / sqrt(3xy^2)#? How do you simplify # sqrt ((4a^3 )/( 27b^3))#? How do you simplify #sqrt140#? How do you simplify #sqrt216#? See all questions in Square Root Impact of this question 2539 views around the world You can reuse this answer Creative Commons License