How do you simplify #(t^2(t-11)^4)/(t^5(t-11)^2)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer Tazwar Sikder Sep 15, 2016 #((t - 11)^(2)) / (t^(3))# Explanation: We have: #(t^(2) (t - 11)^(4)) / (t^(5) (t - 11)^(2))# Using the laws of exponents: #= t^(2 - 5) cdot (t - 11)^(4 - 2)# #= t^(- 3) cdot (t - 11)^(2)# #= ((t - 11)^(2)) / (t^(3))# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1325 views around the world You can reuse this answer Creative Commons License