How do you simplify (tan 4Θ + tan 2Θ) / (1-tan 4Θtan 2Θ)?
1 Answer
Explanation:
The sum of angles formulae for
sin (alpha+beta) = sin alpha cos beta + sin beta cos alpha
cos (alpha + beta) = cos alpha cos beta - sin alpha sin beta
Hence we find:
tan (alpha + beta) = (sin (alpha + beta))/(cos (alpha + beta))
color(white)(tan (alpha + beta)) = (sin alpha cos beta + sin beta cos alpha)/(cos alpha cos beta - sin alpha sin beta)
color(white)(tan (alpha + beta)) = ((sin alpha cos beta + sin beta cos alpha) -: (cos alpha cos beta))/((cos alpha cos beta - sin alpha sin beta) -: (cos alpha cos beta))
color(white)(tan (alpha + beta)) = (sin alpha / cos alpha + sin beta / cos beta)/(1 - sin alpha / cos alpha sin beta / cos beta)
color(white)(tan (alpha + beta)) = (tan alpha + tan beta)/(1 - tan alpha tan beta)
So the sum of angles formula for
tan (alpha + beta) = (tan alpha + tan beta)/(1- tan alpha tan beta)
Putting
(tan 4 theta + tan 2 theta)/(1 - tan 4 theta tan 2 theta) = tan (4 theta + 2 theta) = tan 6 theta