How do you simplify the expression (1+costheta)(csctheta-cottheta)(1+cosθ)(cscθcotθ)?

1 Answer
Nov 6, 2016

sin(theta)sin(θ)

Explanation:

It ca be rewritten as
(1+cos(theta))(1/sin(theta)-cos(theta)/sin(theta))(1+cos(θ))(1sin(θ)cos(θ)sin(θ))

that becomes

(1+cos(theta))(1-cos(theta))/sin(theta)=(1-cos^2(theta))/sin(theta)=sin^2(theta)/sin(theta)=sin(theta)(1+cos(θ))1cos(θ)sin(θ)=1cos2(θ)sin(θ)=sin2(θ)sin(θ)=sin(θ)