How do you simplify the expression (1+cosx)/sinx+sinx/(1+cosx)1+cosxsinx+sinx1+cosx?

1 Answer
Aug 30, 2016

The expression can be simplified to 2cscx2cscx

Explanation:

Start by putting on a common denominator.

=>((1 + cosx)(1 + cosx))/((sinx)(1 + cosx)) + (sinx(sinx))/((sinx)(1 + cosx))(1+cosx)(1+cosx)(sinx)(1+cosx)+sinx(sinx)(sinx)(1+cosx)

=>(cos^2x + 2cosx + 1 + sin^2x)/(sinx(1 + cosx))cos2x+2cosx+1+sin2xsinx(1+cosx)

Apply the pythagorean identity cos^2x + sin^2x = 1cos2x+sin2x=1:

=>(1 + 2cosx + 1)/(sinx(1 + cosx)1+2cosx+1sinx(1+cosx)

=>(2 + 2cosx)/(sinx(1 + cosx))2+2cosxsinx(1+cosx)

Factor out a 22 in the numerator.

=> (2(1 + cosx))/(sinx(1 + cosx))2(1+cosx)sinx(1+cosx)

=>2/sinx2sinx

Finally, apply the reciprocal identity 1/sintheta = csctheta1sinθ=cscθ to get:

=> 2cscx2cscx

Hopefully this helps!