How do you simplify the expression 1+tan^2theta?

2 Answers
Jul 16, 2018

The answer is =sec^2theta

Explanation:

We need

tantheta=sintheta/costheta

sin^2theta+cos^2theta=1

1/costheta=sectheta

The expression is

1+tan^2theta=1+sin^2theta/cos^2theta

=(cos^2theta+sin^2theta)/cos^2theta

=1/cos^2theta

=sec^2theta

1+\tan^2\theta=\sec^2\theta

Explanation:

1+\tan^2\theta

=1+\sin^2\theta/\cos^2\theta

={\cos^2\theta+\sin^2\theta}/\cos^2\theta

={1}/\cos^2\theta

=\sec^2\theta