How do you simplify the expression (1-tan^2x)/(1+tan^3x)?

1 Answer
Apr 22, 2017

(1 - tan x)/(1 - tan x + tan^2 x)

Explanation:

Use algebraic identity:
a^3 + b^3 = (a + b)(a^2 - ab + b^2)
In this case:
1 + tan^3 x = (1 + tan x)(1 - tan x + tan^2 x)
The expression can be simplified to:
F(x) = ((1 - tan x)(1 + tan x))/((1 + tan x)(1 - tan x+ tan^2 x)) =
F(x) = (1 - tan x)/(1 - tan x + tan^2 x)