How do you simplify the expression cos^2x/(1+sinx)cos2x1+sinx? Trigonometry Trigonometric Identities and Equations Fundamental Identities 1 Answer Cesareo R. Sep 27, 2016 1-sin x1−sinx Explanation: cos^2x/(1+sinx) = (1-sin^2 x)/(1+sinx) = ((1-sin x)(1+sin x))/(1+sin x)cos2x1+sinx=1−sin2x1+sinx=(1−sinx)(1+sinx)1+sinx Now we proceed to cancell (1+sin x)(1+sinx) in both numerator and denominator because they configure a so called avoidable discontinuity. So cos^2x/(1+sinx) = 1-sin xcos2x1+sinx=1−sinx Answer link Related questions How do you use the fundamental trigonometric identities to determine the simplified form of the... How do you apply the fundamental identities to values of thetaθ and show that they are true? How do you use the fundamental identities to prove other identities? What are even and odd functions? Is sine, cosine, tangent functions odd or even? How do you simplify sec xcos (frac{\pi}{2} - x )secxcos(π2−x)? If csc z = \frac{17}{8}cscz=178 and cos z= - \frac{15}{17}cosz=−1517, then how do you find cot zcotz? How do you simplify \frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 \theta - \cos^2 \theta} sin4θ−cos4θsin2θ−cos2θ using... How do you prove that tangent is an odd function? How do you prove that sec(pi/3)tan(pi/3)=2sqrt(3)sec(π3)tan(π3)=2√3? See all questions in Fundamental Identities Impact of this question 38745 views around the world You can reuse this answer Creative Commons License