Let a = arc tan 2x in Q1 or Q4, wherein cosine is positive.
Then, tan a = 2x, sin a = (2x)/sqrt(1+4x^2) and cos a = 1/sqrt(1+4x^2)
Let b = arc sin x in Q1 or Q4, wherein cosine is positive.
Then, sin b = x and cos b = sqrt(1-x^2).
Now, the given expression is
cos(a-b)
=cos a cos b + sin a sin b
=(1/sqrt(1+4x^2))(sqrt(1-x^2))+((2x)/sqrt(1+4x^2))(x)
=(sqrt(1-x^2)+2x^2)/sqrt(1+4x^2).
See how it works.
Let x = 1/2. Then a = arc sin (1/2) = pi/6 and b = arc tan 1 = pi/4
cos (a-b) = cos (pi/4-pi/6)=cos (pi/12) = (sqrt3 + 1 )/(2sqrt2)
When x = 1/2,
(2x^2+sqrt(1-x^2))/sqrt(1+4x^2)
#=(1/2+sqrt3/2)/sqrt(1+1)@
= (sqrt3 + 1 )/(2sqrt2)