How do you simplify the expression cos(arctan 2x - arcsin x)?

1 Answer
Aug 25, 2016

(sqrt(1-x^2)+2x^2)/sqrt(1+4x^2)

Explanation:

Let a = arc tan 2x in Q1 or Q4, wherein cosine is positive.

Then, tan a = 2x, sin a = (2x)/sqrt(1+4x^2) and cos a = 1/sqrt(1+4x^2)

Let b = arc sin x in Q1 or Q4, wherein cosine is positive.

Then, sin b = x and cos b = sqrt(1-x^2).

Now, the given expression is

cos(a-b)

=cos a cos b + sin a sin b

=(1/sqrt(1+4x^2))(sqrt(1-x^2))+((2x)/sqrt(1+4x^2))(x)

=(sqrt(1-x^2)+2x^2)/sqrt(1+4x^2).

See how it works.

Let x = 1/2. Then a = arc sin (1/2) = pi/6 and b = arc tan 1 = pi/4

cos (a-b) = cos (pi/4-pi/6)=cos (pi/12) = (sqrt3 + 1 )/(2sqrt2)

When x = 1/2,

(2x^2+sqrt(1-x^2))/sqrt(1+4x^2)

#=(1/2+sqrt3/2)/sqrt(1+1)@

= (sqrt3 + 1 )/(2sqrt2)