How do you simplify the expression cot^2x/(cscx-1)cot2xcscx1?

1 Answer
Oct 15, 2016

=csctheta+1=cscθ+1

Explanation:

using the identity

cot^2theta+1=csc^2thetacot2θ+1=csc2θ

we have:

cot^2theta/(csc-1)=(csc^2theta-1)/(csctheta-1)cot2θcsc1=csc2θ1cscθ1

using difference of squares in the numerator

=((csctheta+1)(csctheta-1))/(csctheta-1)=(cscθ+1)(cscθ1)cscθ1

=((csctheta+1)cancel((csctheta-1)))/(cancel((csctheta-1)))

=csctheta+1