How do you simplify the expression cott(tant+cott)?

1 Answer
Sep 12, 2016

csc^2t

Explanation:

We can begin by using the color(blue)"trigonometric identities"

color(orange)"Reminder"

color(red)(bar(ul(|color(white)(a/a)color(black)(tant=(sint)/(cost)" and " cott=(cost)/(sint))color(white)(a/a)|)))

The expression may now be written as.

(cost)/(sint)((sint)/(cost)+(cost)/(sint))

and distributing the bracket gives.

1+(cos^2t)/(sin^2t)=(sin^2t)/(sin^2t)+(cos^2t)/(sin^2t)

both fractions have a common denominator so adding gives.

(sin^2t+cos^2t)/(sin^2t)

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|)))

and color(red)(bar(ul(|color(white)(a/a)color(black)(csct=1/(sint))color(white)(a/a)|)))

rArr(sin^t+cos^2t)/(sin^2t)=1/(sin^2t)=csc^2t

Thus cott(tant+cott)" simplifies to" csc^2t