How do you simplify the expression cott(tant+cott)?
1 Answer
Sep 12, 2016
Explanation:
We can begin by using the
color(blue)"trigonometric identities"
color(orange)"Reminder"
color(red)(bar(ul(|color(white)(a/a)color(black)(tant=(sint)/(cost)" and " cott=(cost)/(sint))color(white)(a/a)|))) The expression may now be written as.
(cost)/(sint)((sint)/(cost)+(cost)/(sint)) and distributing the bracket gives.
1+(cos^2t)/(sin^2t)=(sin^2t)/(sin^2t)+(cos^2t)/(sin^2t) both fractions have a common denominator so adding gives.
(sin^2t+cos^2t)/(sin^2t)
color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2t+cos^2t=1)color(white)(a/a)|))) and
color(red)(bar(ul(|color(white)(a/a)color(black)(csct=1/(sint))color(white)(a/a)|)))
rArr(sin^t+cos^2t)/(sin^2t)=1/(sin^2t)=csc^2t Thus
cott(tant+cott)" simplifies to" csc^2t