How do you simplify the expression cotxcosx+cot^2xcotxcosx+cot2x?

1 Answer
Apr 23, 2018

{cos^2x(sinx+1)}/sin^2xcos2x(sinx+1)sin2x.

Explanation:

cotxcosx+cot^2xcotxcosx+cot2x,

=cosx/sinx*cosx+cos^2x/sin^2x=cosxsinxcosx+cos2xsin2x,

=cos^2x/sinx+cos^2x/sin^2x=cos2xsinx+cos2xsin2x,

=(cos^2xsinx+cos^2x)/sin^2x=cos2xsinx+cos2xsin2x,

={cos^2x(sinx+1)}/sin^2x=cos2x(sinx+1)sin2x.