How do you simplify the expression sin (arctan (1/4) + arccos (3/4) )sin(arctan(14)+arccos(34))?

1 Answer

sin (arctan(1/4)+arccos(3/4))=(3sqrt17+4sqrt119)/68sin(arctan(14)+arccos(34))=317+411968

Explanation:

Let A=arctan(1/4)A=arctan(14)
Let B=arccos(3/4)B=arccos(34)

sin (A+B)=sin A cos B + cos A sin Bsin(A+B)=sinAcosB+cosAsinB

sin (A+B)=(1/sqrt17)(3/4) + (4/sqrt17) (sqrt7/4)sin(A+B)=(117)(34)+(417)(74)

sin (A+B)=(3+4sqrt7)/(4sqrt17)sin(A+B)=3+47417

sin (A+B)=(3sqrt17+4sqrt119)/68sin(A+B)=317+411968

sin (arctan(1/4)+arccos(3/4))=(3sqrt17+4sqrt119)/68sin(arctan(14)+arccos(34))=317+411968

God bless....I hope the explanation is useful.