How do you simplify the expression sin(arctan 2x - arccos x)?

1 Answer
Aug 29, 2016

"The Reqd. Value"=(2x^2-sqrt(1-x^2))/sqrt(4x^2+1).

Explanation:

Suppose that, arc tan 2x=alpha, and, arc cos x=beta

rArr tan alpha=2x, and, cos beta=x.

For the sake of brevity, we assume that 0<=x<=1, so that,

0<= alpha, beta <=pi/2 rArr "all Trigo. Ratios are" >0.

Now, reqd. value =sin (alpha-beta)

=sin alphacos beta- cos alphasin beta...........(star)

tan alpha=2x rArr sec^2 alpha=tan^2 alpha+1=4x^2+1

rArr cos alpha=1/(+sqrt(4x^2+1)).....(1).

tan alpha=2x rArr sin alpha/cos alpha=2x

rArr sin alpha=2xcos alpha=(+2x)/sqrt(4x^2+1)..........(2)

Also, cos beta=x rArr sin beta=+sqrt(1-x^2)..........(3)

Using (1)-(3) in (star), bearing in mind that cos beta=x,

"The Reqd. Value"=(2x^2)/sqrt(4x^2+1)-sqrt(1-x^2)/sqrt(4x^2+1)

=(2x^2-sqrt(1-x^2))/sqrt(4x^2+1).

Enjoy Maths.!